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Abstract. We present a deep learning model, CH4Net, for automated monitoring of methane super-emitters from Sentinel-2

data. When trained on images of 21 methane super-emitters from 2017-2020 and evaluated on images from 2021 this model

achieves a scene-level accuracy of 0.83 and pixel-level balanced accuracy of 0.77. For individual emitters, accuracy is greater

than 0.8 for 17 out of the 21 sites. We further demonstrate that CH4Net can successfully be applied to monitor two superemitter

locations with similar background characteristics not included in the training set, with accuracies of 0.92 and 0.96. In addition5

to the CH4Net model we compile and open source a hand annotated training dataset consisting of 925 methane plume masks.

1 Introduction

As a potent greenhouse gas responsible for approximately 25% of warming since the industrial revolution (Stocker, 2014;

Varon et al., 2021) with rapidly increasing atmospheric concentrations (Tollefson, 2022), curbing methane emissions is an

important step in combating the climate crisis. Anthropogenic emissions emanate from diverse sources, principally associated10

with livestock, agriculture, landfills, and the fossil fuel industry (oil and gas extraction and coal mining) (Saunois et al., 2020;

Maasakkers et al., 2022). Of particular interest for rapid suppression of emissions are super-emitters, defined to be sources in

the top 1% of global anthropogenic methane emitters, corresponding to an approximate flow rate of 25 kg/h (Zavala-Araiza

et al., 2017). These sources contribute a substantial fraction of all methane emissions in the oil and gas sector (Alvarez et al.,

2018), providing an opportunity to rapidly limit emissions with mitigation at a reasonable cost (Lauvaux et al., 2022).15

Over the past five years, remote sensing instruments have been extensively utilised for detecting and monitoring super-

emitters (Irakulis-Loitxate et al., 2022; Lauvaux et al., 2022; Varon et al., 2021; Maasakkers et al., 2022; Irakulis-Loitxate

et al., 2021). To monitor these point sources, it is necessary to use point source imagers, instruments with a spatial resolution

of less than 60 m (Jacob et al., 2022). In addition to this, the ideal instrument would also have global coverage, rapid revisit
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time, and high spectral resolution in the 1700 and 2300 nm short wave infrared spectral windows where methane absorption is20

the strongest. Unfortunately, no currently available instrument has all of these desired characteristics.

Hyperspectral instruments, for example PRISMA and EnMAP, provide the most accurate concentration retrievals. However,

these instruments suffer a significant limitation in that they require tasking and hence have limited data availability.

An alternative approach is to utilise multispectral imagery such as Sentinel-2 (Drusch et al., 2012) and Landsat-8 and 9

(Roy et al., 2014). These instruments have relatively rapid revisit time (approximately five days for Sentinel-2 and 16 days for25

Landsat at the equator) and high (20-30m) spatial resolution. They do, however, have significantly degraded spectral resolution

compared to hyperspectral instruments, resulting in a lower sensitivity to methane and hence a stronger sensitivity to the

background surface. Recent work has demonstrated successful detection and quantification of large plumes from Sentinel-

2 imagery (Varon et al., 2021; Ehret et al., 2022; Irakulis-Loitxate et al., 2022). These approaches are based on temporal

differences and ratios between Sentinel-2 bands 11 (1560–1660 nm) and 12 (2090–2290 nm). Band 12 strongly overlaps with30

the methane absorption feature, while band 11 provides an estimate of the background at a relatively similar wavelength. Varon

et al. (2021) present a series of approaches differencing between S2 bands 11 and 12 to quantify methane emissions. Their

most successful approach quantifies emissions down to a rate of 3 t/h (tons of CH4 emitted per hour) by taking the difference

of bands 11 and 12 comparing two consecutive passes, however remains sensitive to surface artefacts. Ehret et al. (2022) take a

similar approach projecting onto a time series of 30 previous images with two-stage linear regression and a manual verification35

step to identify the presence of false positives caused by surface artefacts. There are two significant limitations with these

methods. The first and most important is that that they remain sensitive to surface artifacts, often requiring manual verification.

The second is that a timeseries of images is required.

In this study, we take an alternative approach and train a machine learning model, CH4Net, to segment methane plumes from

a single image without the need for a time series of previous images, reference image or manual verification step. Machine40

learning has been successfully applied to segmenting plumes in hyperspectral data (Groshenry et al., 2022; Jongaramrungruang

et al., 2022; Schuit et al., 2023), however, this methodology has not yet been applied to Sentinel-2 imagery as a sufficiently large

dataset of verified plumes is unavailable. We first collect and annotate a dataset of methane plumes from known super-emitters

in Turkmenistan (Irakulis-Loitxate et al., 2022), a semi-arid region with strong emissions providing the best-case scenario for

multispectral methane mapping. This is used to train a deep learning model to segment methane plumes from the background.45

We evaluate this model for a future time period for the training locations. In addition, we show that the model can successfully

be applied to monitor a super-emitter at a new location in the same region unseen at training time. The aims of this paper are

as follows:

1. Collect and label a machine learning dataset of methane plumes in Sentinel-2 imagery.

2. Develop an automated plume segmentation system. In contrast to existing works, this is a fully automated system that50

does not require a time series of Sentinel-2 images or identification of a reference image.

3. Apply this system to track emissions from a selection of known methane super-emitters during a future time period.

4. Quantify skill at new locations unseen at training time.
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Figure 1. Locations of the 23 super emitters included in the dataset showing the study region shaded in red and precise locations (inset).

Section 2 presents an overview of dataset collection, the CH4Net architecture and training procedure. Results are presented

in Section 3, with conclusions and a discussion in Section 4.55

2 Methods

2.1 Dataset collection and processing

We first collect and manually annotate a dataset of methane plumes from Sentinel-2 images from 2017-2021 consisting of

10,046 0.01×0.01 degree images ( 200×200 pixels) from Sentinel-2 L1C scenes centred on 23 known super-emitter locations

in Turkmenistan (Irakulis-Loitxate et al., 2022). Several locations identified are in close proximity to each other, and are60

combined into a single scene. For a map and complete list of included sites, see Figure 1 and Table 1. For each site all available

images were downloaded using the Sentinel Hub API, each consisting of the 13 scaled and harmonized Sentinel-2 channels

(Sinergise Ltd., 2023). Images containing clouds are deliberately not discarded to allow the model to learn a mapping robust

to these features without the need for costly preprocessing steps. We note that the model output is therefore predicting whether

a plume is visible in the scene or not; it is possible that an emission may be present but is covered by clouds. Cloudy scenes65

could easily be discarded if necessary for a particular application by applying a cloud detection model (Jeppesen et al., 2019;

López-Puigdollers et al., 2021; Aybar et al., 2022).

We frame methane detection as a binary segmentation problem, where a pixel is classified as either 0, if not part of a plume,

or 1, if part of a plume. To label the plumes, enhanced images were created for each time-step using the multi-band multi-
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Figure 2. Examples of the MBMP images and corresponding hand annotated masks.

pass (MBMP) method developed by Varon et al. (2021). A clear-sky reference image was chosen for each location, with the70

multi-band multi-pass image given by

MBMP =
cR12−R11

R11
− c′R′

12−R′
11

R′
11

where R11 and R12 are the raw Sentinel-2 band 11 and 12 observations for the current image, R′
11 and R′

12 are the raw Sentinel-

2 band 11 and 12 observations for the reference image and c (c′) is calculated by least-squares regression of R11 against R12

(R′
11 against R′

12) for all pixels. These images were used to manually identify and label the extent of the methane plumes for75

each time-step. For examples of the MBMP images and corresponding hand-labelled plumes, see Figure 2. It is emphasized

that these MBMP images are used as an auxillary tool to guide annotation only and are not included as input predictors to the

final model.

Each data point consists of the 13 Sentinel-2 bands interpolated to a common resolution of 10m together with the hand-

labelled plume mask for a total of 925 scenes containing a plume and 9121 without. The resolution of 10m is chosen as adding80

the highest resolution RGB channels improves the model performance, so all data is interpolated to this resolution to avoid loss

of information. This dataset is split into train (2017-2020; 7783 images with 659 containing plumes), and validation (2021;

2263 images with 266 containing plumes) sets. For the validation set, 266 negative images are randomly sampled to prevent

the metrics being biased towards negative samples. In addition, we hold two locations out from the training set entirely to test
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Figure 3. Schematic of the CH4Net model architecture showing the Sentinel-2 bands input to the UNet and probabilistic output compared

to the hand-annotated mask.

the ability of the model to generalise to new sites. This is referred to as the held out dataset containing images over the two85

sites in 2021 (210 total images, 9 plumes).

2.2 Model architecture and training

The detection model uses a simple and flexible UNet architecture Ronneberger et al. (2015) consisting of 4 encoder blocks

(2D convolution layer, batch norm, ReLU activation, 2D convolution layer, batch norm ReLU activation, maxpool) followed

by four decoder blocks (transposed 2D convolution layer, 2D convolution layer, batch norm, ReLU activation, 2D convolution90

layer, batch norm ReLU activation) with skip connections between blocks of corresponding scale. Channel output dimensions

for each of these blocks are {128,256,512,512,256,128,64,128,1} with kernel sizes of 3 for all convolution layers and 2 for

the max pooling layers. For a complete schematic of the model see Figure 3. This model takes the Sentinel-2 bands as input

and outputs a pixelwise prediction of the probability of the pixel being part of a methane plume.

The UNet is trained on the training dataset described above with Binary Cross-Entropy loss, Adam optimisation (Kingma95

and Ba, 2014) and a learning rate of 1e− 4 for 250 epochs. As the dataset is unbalanced with significantly more negative than

positive images, at each epoch n negative images are randomly sampled, where n is the total size of the positive image set. To

prevent overfitting augmentation is applied by cropping a random 100x100 pixel scene from the larger image tiles. In order to

investigate the optimal predictor set, the UNet is trained with both bands 11 and 12 only as predictors (11+12), and all bands

(ALL).100
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3 Validation results

We first evaluate the skill of CH4Net at correctly identifying whether a given image contains a methane plume. This is referred

to as scene-level prediction, as opposed to pixel-level prediction. For scene-level prediction the probabilistic predictions are

transformed to a binary prediction by defining a methane plume as a contiguous region of greater than 115 pixels with proba-

bility greater than or equal to 0.25. The 115 pixel threshold is chosen as this is the size of the smallest plume contained in the105

training set, while the 0.25 threshold is selected to maximize the balanced accuracy score. A scene is classified as 1 (containing

a plume) if such a feature is present and 0 otherwise.

Accuracy, precision, recall, false positive rate, and false negative rate for both the ALL and 11+12 experiments over the

2021 validation set are shown in the upper portion of Table 1. The model with all bands included as predictors outperforms that

with only bands 11 and 12, indicating that other bands add value for methane detection, or for the reduction of false positives.110

Results over the validation set for the model with all bands included are accuracy 0.83, precision 0.82, recall 0.82, false positive

rate 0.17 and false negative rate 0.18, indicating good skill at correctly determining between scenes with and without a plume.

Table 1. Scene and pixel level metrics over the validation dataset (year 2021) for CH4Net trained with the complete 13 band predictor set

(ALL) and the bands 11 and 12 only predictor set (11+12).

Scene level metrics

ALL 11+12

Accuracy 0.83 0.79

False positive rate 0.17 0.19

False negative rate 0.18 0.23

Precision 0.82 0.77

Recall 0.82 0.80

Pixel level metrics

Balanced accuracy 0.77 0.73

Accuracy 0.98 0.97

A more challenging task is to assess prediction skill at a pixel level, quantified by accuracy and balanced accuracy over all

pixels. Here balanced accuracy is included to account for the imbalance of positive to negative pixels. Results on these metrics

are shown in the lower section of Table 1. The model trained with all bands achieves a balanced accuracy (overall accuracy) of115

0.77 (0.98) compared to 0.73 (0.97) for the model with just bands 11 and 12, indicating that inclusion of other channels also

improves performance at the pixel level.
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4 Application to monitoring super-emitter sites

A potential application for such a model is in providing automated monitoring of locations where previous emissions are known

to have occurred. To quantify the skill of CH4Net in this setting we produce predictions for all available images during the120

2021 validation period at each of the 21 training sites. For this application important scene-level metrics to consider are the

accuracy (the total percentage of correct predictions), false alarm rate (percentage of incorrect alerts), and false negative rate

(percentage of missed alerts). Pixel-level metrics assessing the quality of the generated mask are the accuracy and balanced

accuracy. Results for each site are presented in Table 2. In all cases, these are generated using the optimal predictor set with all

bands (ALL).125

At a scene level, high accuracy is observed for a majority of sites, with accuracy greater than 80% for 17 out of 21 sites, and

ranging from 0.6 to 0.79 for remaining sites. False positive rates range from 0.01 to 0.4, and false negative rates from 0.0 to

0.42, though are below 0.2 for a majority of sites.

At a pixel level, accuracy values are greater than 0.97 for all sites. As this is primarily a result of the over-representation of

negative pixels, balanced accuracy is a more informative metric. Balanced accuracy ranges from 0.62 to 1.0, with 18 out of the130

21 sites above 0.75.

To better understand the successes and limitations of this approach, we present several case studies, two of locations with

excellent prediction quality (sites T7 and T21) and two with poor prediction quality (sites T1 and T11).

4.1 Case studies: sites T7 and T21 (high quality predictions)

For example, consider site T7 where the prediction system has a balanced accuracy score of 0.90, with false positive rate of135

0.06 and false negative rate of 0.16 for a site where 39% of scenes in the validation set contain an emission. Figure 4 compares

predictions to the observed values for scene-level classification. Overall predictions are in good agreement with observations,

correctly identifying two emissions early in 2021 followed by a period of high emission activity which subsides towards the

end of the year.

Predictions at site T21 provide an example of correct prediction of a single emission event over the course of the validation140

year with an additional false positive at the end of the time series. For this site the scene level accuracy is 0.99, false positive

rate 0.01, false negative rate 0.0 and pixel level balanced accuracy 0.72.

4.2 Case studies: sites T1 and T11 (low quality predictions)

We next examine two cases with comparatively poor prediction quality. Results for site T1 are the worst out of all locations

with at least one emission during the validation year, with an accuracy of 0.69, false positive rate of 0.35 and false negative145

rate of 0.12. A time series of predictions compared to observations is shown in the upper panel of Figure 5. This demonstrates

that the model produces a high number of false positives, particularly through the second half of the year. Closer examination

of individual predictions images indicates that there are three primary sources of false positives. Artifacts in the image (e.g.,

Fig. 6(a)) and thin clouds (e.g., Fig. 6(b)) produce occasional false positives throughout the time series. During the second
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Table 2. CH4Net performance evaluated on all available images at the 23 super-emitter sites for 2021. It is emphasized that sites T6 and T17

are not included in the training set.

Site longitude latitude % positive ACC (scene) FPR FNR ACC (pixel) balanced ACC (pixel)

T1 53.6367 39.49687 17.0% 0.69 0.35 0.12 0.98 0.81

T2 53.77274 39.52148 0.0% 0.96 0.04 0.0 1.0 1.0

T3 53.77903 39.52137 0.0% 0.86 0.14 0.0 0.99 0.99

T4 53.74292 39.4739 1.0% 0.86 0.14 0.0 0.99 0.94

T5 53.78836 39.46428 1.0% 0.79 0.22 0.0 0.99 0.67

T6 53.77502 39.4616 38.0% 0.92 0.04 0.15 0.98 0.78

T7 53.77921 39.45965 39.0% 0.9 0.06 0.16 0.99 0.79

T8 53.68117 39.44955 0.0% 0.99 0.01 0.0 1.0 1.0

T9 53.76506 39.36045 23.0% 0.7 0.37 0.09 0.98 0.75

T10 53.83516 39.38584 0.0% 0.92 0.08 0.0 1.0 1.0

T11 53.87509 39.35498 8.0% 0.95 0.01 0.5 0.99 0.62

T12 54.23498 38.85515 15.0% 0.88 0.1 0.27 0.99 0.81

T13 54.20931 38.57959 0.0% 0.92 0.08 0.0 1.0 1.0

T14 54.20049 38.55747 37.0% 0.81 0.24 0.11 0.98 0.83

T15 54.20393 38.51871 0.0% 0.82 0.18 0.0 0.99 0.99

T16 54.19769 38.50798 0.0% 0.97 0.03 0.0 1.0 1.0

T17 54.19764 38.49393 10.0% 0.96 0.05 0.0 0.99 0.97

T18 54.02832 38.33078 16.0% 0.73 0.25 0.42 0.99 0.71

T19 54.03149 38.36017 0.0% 0.62 0.38 0.0 0.98 0.98

T20 53.89857 37.90825 16.0% 0.84 0.16 0.17 0.99 0.76

T21 53.91623 37.9286 1.0% 0.99 0.01 0.0 1.0 0.72

T22 53.92431 37.92913 23.0% 0.88 0.04 0.41 0.99 0.67

T23 53.92702 37.71665 0.0% 0.6 0.4 0.0 0.98 0.98

half of 2021 multiple false positives are produced coinciding with a bright surface artifact visible in both the RGB and MBMP150

images (e.g., Fig. 6(c)). It is possible that this is a methane emission source, however, it is not labelled as such during the

manual labelling as either the wind speed is too low to produce a clear plume or alternatively the emissions are weak with only

the area immediately at the source detectable with the limited detection capability of Sentinel-2.

Site T11 is an example of a site with multiple false negatives. For this location, the scene accuracy is 0.95, with a false

positive rate of 0.01 however the false negative rate is the highest for all sites at 0.5. The prediction time series for this site is155

shown in the lower panel of Figure 5. Here the false negatives appear to arise in cases with heterogeneous background (which

also often results in an increase in false positives). This is consistent with recent work indicating that the detection capability

of Sentinel-2 is significantly lower in cases with a strongly heterogeneous background (Gorroño et al., 2023).
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Figure 4. Time series of predictions for sites T7 (top) and T21 (bottom) over the validation year (2021). Green (red) lines indicate that a

plume was (not) observed or predicted. Observed ground truth values are shown in the upper time series and CH4Net predictions on the

lower time series.

5 Skill at new sites

An interesting question is whether the trained CH4Net model can generate skillful predictions at locations unseen at training160

time. To evaluate skill in this scenario two locations were held out at random (sites T6 and T17), and CH4Net applied to generate

predictions at these locations for 2021.

For site T6, CH4Net achieves a scene-level accuracy of 0.92, false positive rate of 0.04 and false negative rate of 0.15. At a

pixel level, the balanced accuracy is 0.78 (Table 2). A time series of predictions is shown in 7 (upper panel). This demonstrates

overall excellent skill, with two sporadic emissions correctly identified at the beginning of the time series, followed by a lengthy165

period of continuous emissions, which are largely correctly detected before the site ceases emitting towards the end of the year.

A more detailed view of predictions at a pixel scale is shown in Figure 8. This shows the observation mask compared to

prediction overlaid on the RGB imagery for every available Sentinel-2 image in 2021. Both the occurrence and morphology of

each plume is largely well captured, though several false positives and false negatives are observed during the period of high

activity in the middle of the year.170

For the second held out site, T17 CH4Net achieves an accuracy of 0.96, false positive rate of 0.05, false negative rate of 0.0

and pixel level balanced accuracy of 0.97. Similar to the analysis for site T6 above, the time series of scene level classifications

is shown in Figure 7 (lower panel) with pixel level predictions shown in Figure 9.
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Figure 5. Time series of predictions for sites T1 (top) and T11 (bottom) over the validation year (2021). Green (red) lines indicate that a

plume was (not) observed or predicted. Observed ground truth values are shown in the upper time series and CH4Net predictions on the

lower time series.

For this site, CH4Net produces two false positives early in the year, however, subsequently correctly predicts all positive and

negative events. Further analysis on a pixel level indicates that the morphology of the predicted masks is of high quality.175

These results indicate that CH4Net has potential for application to other new sites in the same semi-arid region for which

training data are not available. It is emphasized however that these results only investigate the two held out locations which are

both from the same region as the training set, and further more detailed study is required to rigorously quantify prediction skill

on both a larger set of new sites and sites with different background characteristics.

6 Conclusions180

We have implemented CH4Net, the first fully automated system for monitoring known methane super-emitter sites and pro-

duced the first large scale dataset of methane plumes in Sentinel-2 imagery. Model skill was assessed on multiple scene-level

and pixel-level metrics, demonstrating that overall predictions are of high quality, though several sources of false positives

and false negatives remain to be addressed. We further demonstrated that this system can successfully be applied to generate

skillful predictions at new locations unseen at training time. These results offer promise for implementing ongoing tracking of185

known sources to mitigate emissions and provide early warnings when an event is observed.
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Figure 6. Examples of false positives and negatives for sites T1 and T11, showing: (a) false positive at site T1 resulting from image artefact,

(b) false positive at site T1 resulting from thin cloud (not easily visible in the RGB window), (c) false positive at site T1 resulting from

potential low intensity methane source and (d) false negative at site T11 resulting from strongly heterogeneous background.

In contrast to existing methods for methane plume detection in Sentinel-2 images (Varon et al., 2021; Ehret et al., 2022;

Irakulis-Loitxate et al., 2022), this model requires only a single pass to generate predictions and is fully automated. This

creates a significant advantage in allowing large volumes of data to be processed without requiring costly manual verification.
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Figure 7. Time series of predictions for sites T6 (top) and T17 (bottom) over the validation year (2021). Green (red) lines indicate that a

plume was (not) observed or predicted. Observed ground truth values are shown in the upper time series and CH4Net predictions on the

lower time series.

Further work is required in several areas to extend these promising results. A priority for future work is to collect further data190

over new areas and test whether CH4Net is suitable for application to other semi-arid locations. A current shortcoming of this

work is that the output of CH4Net provides only a binary mask as opposed to quantifying the methane concentration at each

pixel. Direct prediction of this quantity would allow for both emission occurrence and volume to be monitored. Additionally,

we hope to extend this dataset to further emission locations outside of Turkmenistan, for example to Algeria, Libya, and Iran,

which have high emissions and similar surface characteristics.195

Code and data availability. Code and hand-annotated masks are available at https://github.com/annavaughan/CH4Net. Sentinel-2 data are

available from Sentinel Hub https://www.sentinel-hub.com/.
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Figure 8. CH4Net pixel-level predictions for every image over site T6 during 2021. For each time-step the observed mask (left) and proba-

bilistic prediction (right) are shown overlaid on the RGB image.
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Figure 9. CH4Net pixel-level predictions for every image over site T17 during 2021. For each time-step the observed mask (left) and

probabilistic prediction (right) are shown overlaid on the RGB image.
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